If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2-275t=0
a = 3; b = -275; c = 0;
Δ = b2-4ac
Δ = -2752-4·3·0
Δ = 75625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{75625}=275$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-275)-275}{2*3}=\frac{0}{6} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-275)+275}{2*3}=\frac{550}{6} =91+2/3 $
| 13b−12=8b+18 | | -6(2x-9)-4x+5=x | | 1-2x/5=1 | | -82+11x=7x+26 | | -2u=u+18 | | X-3/7=1-(x/3) | | 100-5x=25+5x | | 13+6+2x-18=4x-18 | | 7.3=13.8-5n | | 3x+6/5=6 | | 7x-10+3=5x+21 | | 14v+-16v=-16 | | 10x-23=29 | | 2=4k | | -19=2/10s-9 | | 8v+16=7v | | b-7/8=12 | | 50=32-3(x-2) | | 9y+2=-5-2y | | 4x+8x-16=80-4x | | 9-7x=121 | | 7w−9=13 | | 8=4m+2m | | x-(9x-10)+11=12x+3(-2x+(1/3)) | | 6(v-1)+8=32 | | 4x+13-3x=7+5x-6 | | 16-(2z-4)=23 | | X+6(x-1)=7(3+×) | | 7z+4-4z=25-4z | | 1.8y-16.3=1.9+13.3 | | (n÷(-9))+10=11 | | 5-2(3x-6)=18 |